
Tensor Products

Definition of Tensor: Tensor refers to objects with multiple indexes. Comparatively, a “vector”
has one index while a “scalar” has none.Assume and are in a vector space, a pure tensor is𝑉 𝑊
an element of of the form where and𝑉 ⊗ 𝑊 𝑣 ⊗ 𝑤 𝑣 ∈ 𝑉  𝑤 ∈ 𝑊

What is a Tensor Product?
With a tensor product, we can construct a big vector space out of at least two smaller vector
spaces.
If we start with two vector spaces V, n-dimensional, and W, m-dimensional, the tensor products
of these two spaces would be nm-dimensional.

Explanation:
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For two vector spaces, the tensor product is bilinear, meaning it is linear in V and linear in W as
well.

= = 𝑣
→

⊗  𝑤
→

𝑖

𝑛

∑ 𝑣
𝑖
𝑒

𝑖 

→
 ( )⊗

𝑗

𝑚

∑ 𝑤
𝑗
𝑓

𝑗 

→
 ( ) 𝑖

𝑛

∑
𝑗

𝑚

∑𝑣
𝑖
𝑤

𝑗
 𝑒

𝑖 

→
⊗  𝑓

𝑗 

→( )
Example: Let n=2 and m=3 the tensor product would be nm-dimensional, so for this example, 6

dimensional. The basis vectors are , , , ,𝑒
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We can write these as six-component column vectors as below.



The tensor product is shown below for general vectors and𝑣
→

𝑤
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Matrices: (Kronecker Products):

As we are interested in application in mechanics, we are
focused on
and

We can write the matrix as , I being the identity matrix.We will return to our prior𝐴 ⊗  𝐼 
example where n=2 and m=3. The A matrix would be a two-by-two and is a six-by-six.𝐴 ⊗  𝐼 

We will act this expression on , and yield:𝑣
→

⊗ 𝑤
→

In this scenario, the matrix A only acts on but does not impact .𝑣
→

𝑤
→



This is also evident in matrix B: maps . Matrix will only act on𝑊 → 𝑊 𝑤
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From above calculations, we can conclude a general rule: ( =(A ) and𝐴 ⊗ 𝐼( ) 𝑣
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Helpful Proposition: (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶 ⊗ 𝐵𝐷)

In the case where we have two matrices, their multiplications are done on each vector space
separately, as shown below:
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(𝐴 ⊗ 𝐼)(𝐼 ⊗ 𝐵) = (𝐼 ⊗ 𝐵)(𝐴 ⊗ 𝐼) = (𝐴 ⊗ 𝐵)

The expression for allows us to write it in the matrix form explicitly:(𝐴 ⊗ 𝐵) 
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Properties of Tensor (Kronecker) Products:

Pulling Across Scalars
λ(𝑎 ⊗ 𝑏) = (λ𝑎) ⊗ 𝑏 = 𝑎 ⊗ (λ𝑏)

Example: ℝ ⊗ 𝑉
)2(3 ⊗ 𝑢) + 5(1 ⊗ 𝑣

= (3 * 1)  ⊗ (2𝑢) +  1 ⊗ (5𝑣)
=1 ⊗ (6𝑢) + 1 ⊗  (5𝑣)
=1 ⊗ (6𝑢 + 5𝑣)

So, we can always end up combining the tensor products by pulling across scalars
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Corollary 1: Tr (𝐴 ⊗ 𝐵)= (𝑇𝑟𝐴)(𝑇𝑟𝐵)
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