Tensor Products

Definition of Tensor: Tensor refers to objects with multiple indexes. Comparatively, a "vector" has one index while a "scalar" has none.Assume V and W are in a vector space, a pure tensor is an element of $V \otimes W$ of the form $v \otimes w$ where $v \in V$ and $w \in W$

What is a Tensor Product?

With a tensor product, we can construct a big vector space out of at least two smaller vector spaces.
If we start with two vector spaces V , n -dimensional, and W , m -dimensional, the tensor products of these two spaces would be nm-dimensional.

Explanation:

V is $\left\{\vec{e}_{1}, \overrightarrow{e_{2}}, \ldots, \vec{e}_{n}\right\}$ and W is $\left\{\vec{f}_{1}, \overrightarrow{f_{2}}, \ldots, \vec{f}_{m}\right\}$
We define nm basis vectors $\vec{e}_{i} \otimes \vec{f}_{j}$, where $\mathrm{i}=1, \cdots, \mathrm{n}$ and $\mathrm{j}=1, \cdots, \mathrm{~m}$
For two vector spaces, the tensor product is bilinear, meaning it is linear in V and linear in W as well.

$$
\vec{v} \otimes \vec{w}=\left(\sum_{i}^{n} v_{i} \vec{e}_{i}\right) \otimes\left(\sum_{j}^{m} w_{j} \vec{f}_{j}\right)=\sum_{i}^{n m} v_{i} w_{j}\left(\vec{e}_{i} \otimes \overrightarrow{f_{j}}\right)
$$

Example: Let $\mathrm{n}=2$ and $\mathrm{m}=3$ the tensor product would be nm -dimensional, so for this example, 6 dimensional. The basis vectors are $\overrightarrow{e_{1}} \otimes \overrightarrow{f_{1}}, \overrightarrow{e_{1}} \otimes \overrightarrow{f_{2}}, \overrightarrow{e_{1}} \otimes \overrightarrow{f_{3}}, \overrightarrow{e_{2}} \otimes \overrightarrow{f_{1}}$,
$\overrightarrow{e_{2}} \otimes \overrightarrow{f_{2}}, \overrightarrow{e_{2}} \otimes \overrightarrow{f_{3}}$
We can write these as six-component column vectors as below.

$$
\vec{e}_{1} \otimes \vec{f}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\hline 0 \\
0 \\
0
\end{array}\right), \quad \vec{e}_{1} \otimes \vec{f}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \vec{e}_{1} \otimes \vec{f}_{3}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\hline 0 \\
0 \\
0
\end{array}\right), \quad \vec{e}_{2} \otimes \vec{f}_{1}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\hline 1 \\
0 \\
0
\end{array}\right), \quad \vec{e}_{2} \otimes \vec{f}_{2}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\hline 0 \\
1 \\
0
\end{array}\right), \quad \vec{e}_{2} \otimes \vec{f}_{3}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

The tensor product is shown below for general vectors \vec{v} and \vec{w}

Matrices: (Kronecker Products):

$$
\vec{v} \otimes \vec{w}=\left(\begin{array}{c}
v_{1} w_{1} \\
v_{1} w_{2} \\
v_{1} w_{3} \\
\hline v_{2} w_{1} \\
v_{2} w_{2} \\
v_{2} w_{3}
\end{array}\right)
$$

As we are interested in application in mechanics, we are

$$
\vec{v} \longmapsto A \vec{v}
$$ focused on

and

$$
\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)_{V} \longmapsto\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{22} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)_{V} .
$$

We can write the matrix as $A \otimes I$, I being the identity matrix. We will return to our prior example where $\mathrm{n}=2$ and $\mathrm{m}=3$. The A matrix would be a two-by-two and $A \otimes I$ is a six-by-six.

$$
A \otimes I=\left(\begin{array}{ccc|ccc}
a_{11} & 0 & 0 & a_{12} & 0 & 0 \\
0 & a_{11} & 0 & 0 & a_{12} & 0 \\
0 & 0 & a_{11} & 0 & 0 & a_{12} \\
\hline a_{21} & 0 & 0 & a_{22} & 0 & 0 \\
0 & a_{21} & 0 & 0 & a_{22} & 0 \\
0 & 0 & a_{21} & 0 & 0 & a_{22}
\end{array}\right)
$$

We will act this expression on $\vec{v} \otimes \vec{w}$, and yield:

$$
(A \otimes I)(\vec{v} \otimes \vec{w})=\left(\begin{array}{ccc|ccc}
a_{11} & 0 & 0 & a_{12} & 0 & 0 \\
0 & a_{11} & 0 & 0 & a_{12} & 0 \\
0 & 0 & a_{11} & 0 & 0 & a_{12} \\
\hline a_{21} & 0 & 0 & a_{22} & 0 & 0 \\
0 & a_{21} & 0 & 0 & a_{22} & 0 \\
0 & 0 & a_{21} & 0 & 0 & a_{22}
\end{array}\right)\left(\begin{array}{l}
v_{1} w_{1} \\
v_{1} w_{2} \\
v_{1} w_{3} \\
\hline v_{2} w_{1} \\
v_{2} w_{2} \\
v_{2} w_{3}
\end{array}\right)=\left(\begin{array}{l}
\left(a_{11} v_{1}+a_{12} v_{2}\right) w_{1} \\
\left(a_{11} v_{1}+a_{12} v_{2}\right) w_{2} \\
\left(a_{11} v_{1}+a_{12} v_{2}\right) w_{3} \\
\hline\left(a_{21} v_{1}+a_{22} v_{2}\right) w_{1} \\
\left(a_{21} v_{1}+a_{22} v_{2}\right) w_{2} \\
\left(a_{21} v_{1}+a_{22} v_{2}\right) w_{3}
\end{array}\right)=(A \vec{v}) \otimes \vec{w} .
$$

In this scenario, the matrix A only acts on \vec{v} but does not impact \vec{w}.

This is also evident in matrix B: $W \rightarrow W$ maps $\vec{w} \rightarrow B \vec{w}$. Matrix $B \otimes I$ will only act on \vec{w},

$$
\begin{gathered}
I \otimes B=\left(\begin{array}{ccc|ccc}
b_{11} & b_{12} & b_{13} & 0 & 0 & 0 \\
b_{21} & b_{22} & 2_{23} & 0 & 0 & 0 \\
b_{31} & b_{32} & b_{33} & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & b_{11} & b_{12} & b_{13} \\
0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\
0 & 0 & 0 & b_{31} & b_{32} & b_{33}
\end{array}\right) . \\
(I \otimes B)(\vec{v} \otimes \vec{w})=\left(\begin{array}{ccc|ccc}
b_{11} & b_{12} & b_{13} & 0 & 0 & 0 \\
b_{21} & b_{22} & b_{23} & 0 & 0 & 0 \\
b_{31} & b_{32} & b_{33} & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & b_{11} & b_{12} & b_{13} \\
0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\
0 & 0 & 0 & b_{31} & b_{32} & b_{33}
\end{array}\right)\left(\begin{array}{c}
v_{1} w_{1} \\
v_{1} w_{2} \\
v_{1} w_{3} \\
v_{2} w_{1} \\
v_{2} w_{2} \\
v_{2} w_{3}
\end{array}\right)=\left(\begin{array}{l}
v_{1}\left(b_{11} w_{1}+b_{12} w_{2}+b_{13} w_{3}\right) \\
v_{1}\left(b_{21} w_{1}+b_{22} w_{2}+b_{23} w_{3}\right) \\
v_{1}\left(b_{31} w_{1}+b_{32} w_{2}+b_{33} w_{3}\right) \\
v_{2}\left(b_{11} w_{1}+b_{12} w_{2}+b_{13} w_{3}\right) \\
v_{2}\left(b_{21} w_{1}+b_{22} w_{2}+b_{23} w_{3}\right) \\
v_{2}\left(b_{31} w_{1}+b_{32} w_{2}+b_{33} w_{3}\right)
\end{array}\right)=\vec{v} \otimes(B \vec{w}) .
\end{gathered}
$$

From above calculations, we can conclude a general rule: $(A \otimes I)(\vec{v} \otimes \vec{w})=(\mathrm{A} \vec{v}) \otimes \vec{w}$ and $(B \otimes I)(\vec{v} \otimes \vec{w})=\vec{v} \otimes(B \vec{w})$

Helpful Proposition: $(A \otimes B)(C \otimes D)=(A C \otimes B D)$

In the case where we have two matrices, their multiplications are done on each vector space separately, as shown below:
$\left(A_{1} \otimes I\right)\left(A_{2} \otimes I\right)=\left(A_{1} A_{2}\right) \otimes I$,
$\left(I \otimes B_{1}\right)\left(I \otimes B_{2}\right)=I \otimes\left(B_{1} B_{2}\right)$
$(A \otimes I)(I \otimes B)=(I \otimes B)(A \otimes I)=(A \otimes B)$

The expression for $(A \otimes B)$ allows us to write it in the matrix form explicitly:

$$
A \otimes B=\left(\begin{array}{ccc|ccc}
a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} & a_{12} b_{11} & a_{12} b_{12} & a_{12} b_{13} \\
a_{11} b_{21} & a_{11} b_{22} & a_{11} b_{23} & a_{12} b_{21} & a_{12} b_{22} & a_{12} b_{23} \\
a_{11} b_{31} & a_{11} b_{32} & a_{11} b_{33} & a_{12} b_{31} & a_{12} b_{32} & a_{12} b_{33} \\
\hline a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} & a_{22} b_{11} & a_{22} b_{12} & a_{22} b_{13} \\
a_{21} b_{21} & a_{21} b_{22} & a_{21} b_{23} & a_{22} b_{21} & a_{22} b_{22} & a_{22} b_{23} \\
a_{21} b_{31} & a_{21} b_{32} & a_{21} b_{33} & a_{22} b_{31} & a_{22} b_{32} & a_{22} b_{33}
\end{array}\right) .
$$

We can verify that $(A \otimes B)(\vec{v} \otimes \vec{w})=(A \vec{v}) \otimes(B \vec{w})$

Properties of Tensor (Kronecker) Products:

Pulling Across Scalars
$\lambda(a \otimes b)=(\lambda a) \otimes b=a \otimes(\lambda b)$

Example: $\mathbb{R} \otimes V$
$2(3 \otimes u)+5(1 \otimes v)$
$=(3 * 1) \otimes(2 u)+1 \otimes(5 v)$
$=1 \otimes(6 u)+1 \otimes(5 v)$
$=1 \otimes(6 u+5 v)$

So, we can always end up combining the tensor products by pulling across scalars
Theorem: If \vec{v} is an eigenvector for A with eigenvalue of λ, and \vec{w} is an eigenvector for B with eigenvalue of σ, then $(\vec{v} \otimes \vec{w})$ is an eigenvector for $(A \otimes B)$.

Proof: $(A \otimes B)(\vec{v} \otimes \vec{w})=A \vec{v} \otimes B \vec{w}=\lambda \vec{v} \otimes \sigma \vec{w}=\lambda \sigma(\vec{v} \otimes \vec{w})$
Corollary 1: $\operatorname{Tr}(A \otimes B)=(\operatorname{Tr} A)(\operatorname{Tr} B)$
Proof: $\operatorname{Tr}(A \otimes B)=\Sigma$ eigenvalues of $(A \otimes B)=\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i} \sigma_{j}=\sum_{i=1}^{m} \lambda_{i} \sum_{j=1}^{n} \lambda_{i} \sigma_{j}=(\operatorname{Tr} A)(\operatorname{Tr} B)$

Corollary 2: $\operatorname{det}(A \otimes B)=(\operatorname{det} A)^{n}(\operatorname{det} B)^{m}$
Proof: $\operatorname{det}(A \otimes B)=\Pi$ eigenvalues 1 of $(A \otimes B)=\prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_{i} \sigma_{j}=\prod_{i=1}^{m}\left(\lambda_{i}^{n} \prod_{j=1}^{n} \sigma_{j}\right)=\prod_{i=1}^{m} \lambda_{i}^{n} \prod_{j=1}^{n} \sigma_{j}^{m}$ $=(\operatorname{det} A)^{n}(\operatorname{det} B)^{m}$

