Tensor Products

Definition of Tensor: Tensor refers to objects with multiple indexes. Comparatively, a "vector" has one index while a "scalar" has none. Assume *V* and *W* are in a vector space, a pure tensor is an element of $V \otimes W$ of the form $v \otimes w$ where $v \in V$ and $w \in W$

What is a Tensor Product?

With a tensor product, we can construct a big vector space out of at least two smaller vector spaces.

If we start with two vector spaces V, n-dimensional, and W, m-dimensional, the tensor products of these two spaces would be nm-dimensional.

Explanation:

V is
$$\left\{ \vec{e}_1, \vec{e}_2, ..., \vec{e}_n \right\}$$
 and W is $\left\{ \vec{f}_1, \vec{f}_2, ..., \vec{f}_m \right\}$

We define nm basis vectors $\vec{e_i} \otimes \vec{f_j}$, where $i = 1, \dots, n$ and $j = 1, \dots, m$

For two vector spaces, the tensor product is bilinear, meaning it is linear in V and linear in W as well.

$$\vec{v} \otimes \vec{w} = \begin{pmatrix} n \\ \sum_{i} v_{i} \vec{e}_{i} \end{pmatrix} \otimes \begin{pmatrix} m \\ \sum_{j} w_{j} \vec{f}_{j} \end{pmatrix} = \sum_{i} \sum_{j} v_{i} w_{j} \begin{pmatrix} \vec{e}_{i} \otimes \vec{f}_{j} \end{pmatrix}$$

Example: Let n=2 and m=3 the tensor product would be nm-dimensional, so for this example, 6 dimensional. The basis vectors are $\vec{e_1} \otimes \vec{f_1}, \vec{e_1} \otimes \vec{f_2}, \vec{e_1} \otimes \vec{f_3}, \vec{e_2} \otimes \vec{f_1}$,

$$\vec{e_2} \otimes \vec{f_2}, \vec{e_2} \otimes \vec{f_3}$$

We can write these as six-component column vectors as below.

$$\vec{e}_1 \otimes \vec{f}_1 = \begin{pmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}, \quad \vec{e}_1 \otimes \vec{f}_2 = \begin{pmatrix} 0\\ 1\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}, \quad \vec{e}_1 \otimes \vec{f}_3 = \begin{pmatrix} 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}, \quad \vec{e}_2 \otimes \vec{f}_1 = \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0 \end{pmatrix}, \quad \vec{e}_2 \otimes \vec{f}_2 = \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 1\\ 0 \\ 0 \end{pmatrix}, \quad \vec{e}_2 \otimes \vec{f}_3 = \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 1\\ 0 \\ 1 \end{pmatrix}.$$

The tensor product is shown below for general vectors \vec{v} and \vec{w}

$$\vec{v} \otimes \vec{w} = \begin{pmatrix} v_1 w_1 \\ v_1 w_2 \\ v_1 w_3 \\ \hline v_2 w_1 \\ v_2 w_2 \\ v_2 w_3 \end{pmatrix}$$

 $\vec{v} \longmapsto A\vec{v},$

Matrices: (Kronecker Products):

As we are interested in application in mechanics, we are focused on

and

$\left(\begin{array}{c} v_1 \end{array} \right)$		(a_{11})	a_{12}		a_{1n}	$\left(\begin{array}{c} v_1 \end{array} \right)$	
v_2	V	a_{22}	a_{22}	• • •	a_{2n}	v_2	
:		1 :	÷	۰.	:	:	•
$\langle v_n \rangle$		$\langle a_{n1} \rangle$	a_{n2}		a_{nn})	$\langle v_n \rangle$	V

We can write the matrix as $A \otimes I$, I being the identity matrix. We will return to our prior example where n=2 and m=3. The A matrix would be a two-by-two and $A \otimes I$ is a six-by-six.

$$A \otimes I = \begin{pmatrix} a_{11} & 0 & 0 & a_{12} & 0 & 0 \\ 0 & a_{11} & 0 & 0 & a_{12} & 0 \\ 0 & 0 & a_{11} & 0 & 0 & a_{12} \\ \hline a_{21} & 0 & 0 & a_{22} & 0 & 0 \\ 0 & a_{21} & 0 & 0 & a_{22} & 0 \\ 0 & 0 & a_{21} & 0 & 0 & a_{22} \end{pmatrix}.$$

We will act this expression on $\vec{v} \otimes \vec{w}$, and yield:

$$(A \otimes I)(\vec{v} \otimes \vec{w}) = \begin{pmatrix} a_{11} & 0 & 0 & a_{12} & 0 & 0 \\ 0 & a_{11} & 0 & 0 & a_{12} & 0 \\ 0 & 0 & a_{11} & 0 & 0 & a_{12} \\ \hline a_{21} & 0 & 0 & a_{22} & 0 & 0 \\ 0 & 0 & a_{21} & 0 & 0 & a_{22} \\ \hline 0 & 0 & a_{21} & 0 & 0 & a_{22} \\ \hline 0 & 0 & a_{21} & 0 & 0 & a_{22} \\ \hline \end{array} \end{pmatrix} \begin{pmatrix} v_1 w_1 \\ v_1 w_2 \\ \hline v_1 w_3 \\ \hline v_2 w_1 \\ v_2 w_2 \\ v_2 w_3 \\ \hline \end{array} \end{pmatrix} = \begin{pmatrix} (a_{11}v_1 + a_{12}v_2)w_1 \\ (a_{11}v_1 + a_{12}v_2)w_3 \\ \hline (a_{21}v_1 + a_{22}v_2)w_1 \\ (a_{21}v_1 + a_{22}v_2)w_2 \\ (a_{21}v_1 + a_{22}v_2)w_3 \\ \hline \end{array} \end{pmatrix} = (A\vec{v}) \otimes \vec{w}.$$

In this scenario, the matrix A only acts on \vec{v} but does not impact \vec{w} .

This is also evident in matrix B: $W \to W$ maps $\vec{w} \to B\vec{w}$. Matrix $B \otimes I$ will only act on \vec{w} ,

$$I \otimes B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & 0 & 0 & 0 \\ b_{21} & b_{22} & b_{23} & 0 & 0 & 0 \\ b_{31} & b_{32} & b_{33} & 0 & 0 & 0 \\ \hline b_{31} & b_{32} & b_{33} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & b_{11} & b_{12} & b_{13} \\ 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{31} & b_{32} & b_{33} \end{pmatrix}.$$

$$(I \otimes B)(\vec{v} \otimes \vec{w}) = \begin{pmatrix} b_{11} & b_{12} & b_{13} & 0 & 0 & 0 \\ b_{21} & b_{22} & b_{23} & 0 & 0 & 0 \\ \hline b_{31} & b_{32} & b_{33} & 0 & 0 & 0 \\ \hline b_{31} & b_{32} & b_{33} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & b_{11} & b_{12} & b_{13} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{21} & b_{22} & b_{23} \\ \hline 0 & 0 & 0 & b_{31} & b_{32} & b_{33} \end{pmatrix} = \vec{v} \otimes (B\vec{w}).$$

From above calculations, we can conclude a general rule: $(A \otimes I) (\vec{v} \otimes \vec{w}) = (A\vec{v}) \otimes \vec{w}$ and $(B \otimes I) (\vec{v} \otimes \vec{w}) = \vec{v} \otimes (B\vec{w})$

Helpful Proposition: $(A \otimes B)(C \otimes D) = (AC \otimes BD)$

In the case where we have two matrices, their multiplications are done on each vector space separately, as shown below:

$$\begin{aligned} (A_1 \otimes I)(A_2 \otimes I) = & (A_1A_2) \otimes I, \\ (I \otimes B_1)(I \otimes B_2) = & I \otimes (B_1B_2) \\ (A \otimes I)(I \otimes B) = & (I \otimes B)(A \otimes I) = (A \otimes B) \end{aligned}$$

The expression for $(A \otimes B)$ allows us to write it in the matrix form explicitly:

$$A \otimes B = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{11}b_{13} & a_{12}b_{11} & a_{12}b_{12} & a_{12}b_{13} \\ a_{11}b_{21} & a_{11}b_{22} & a_{11}b_{23} & a_{12}b_{21} & a_{12}b_{22} & a_{12}b_{23} \\ a_{11}b_{31} & a_{11}b_{32} & a_{11}b_{33} & a_{12}b_{31} & a_{12}b_{32} & a_{12}b_{33} \\ \hline a_{21}b_{11} & a_{21}b_{12} & a_{21}b_{13} & a_{22}b_{11} & a_{22}b_{12} & a_{22}b_{13} \\ a_{21}b_{21} & a_{21}b_{22} & a_{21}b_{23} & a_{22}b_{21} & a_{22}b_{22} & a_{22}b_{23} \\ a_{21}b_{31} & a_{21}b_{32} & a_{21}b_{33} & a_{22}b_{31} & a_{22}b_{32} & a_{22}b_{33} \end{pmatrix}.$$

We can verify that $(A \otimes B)(\vec{v} \otimes \vec{w}) = (A\vec{v}) \otimes (B\vec{w})$

Properties of Tensor (Kronecker) Products:

Pulling Across Scalars $\lambda(a \otimes b) = (\lambda a) \otimes b = a \otimes (\lambda b)$

Example: $\mathbb{R} \otimes V$ $2(3 \otimes u) + 5(1 \otimes v)$ $= (3 * 1) \otimes (2u) + 1 \otimes (5v)$ $= 1 \otimes (6u) + 1 \otimes (5v)$ $= 1 \otimes (6u + 5v)$

So, we can always end up combining the tensor products by pulling across scalars

Theorem: If \vec{v} is an eigenvector for A with eigenvalue of λ , and \vec{w} is an eigenvector for B with eigenvalue of σ , then $(\vec{v} \otimes \vec{w})$ is an eigenvector for $(A \otimes B)$. Proof: $(A \otimes B)(\vec{v} \otimes \vec{w}) = A\vec{v} \otimes B\vec{w} = \lambda \vec{v} \otimes \sigma \vec{w} = \lambda \sigma(\vec{v} \otimes \vec{w})$ Corollary 1: Tr $(A \otimes B) = (TrA)(TrB)$ Proof: Tr $(A \otimes B) = \Sigma$ eigenvalues of $(A \otimes B) = \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_i \sigma_j = \sum_{i=1}^{m} \lambda_i \sum_{j=1}^{n} \lambda_i \sigma_j = (TrA)(TrB)$

Corollary 2: $det(A \otimes B) = (detA)^n (detB)^m$

Proof: $det(A \otimes B) = \prod$ eigenvalues l of $(A \otimes B) = \prod_{i=1}^{m} \prod_{j=1}^{n} \lambda_i \sigma_j = \prod_{i=1}^{m} (\lambda_i^n \prod_{j=1}^{n} \sigma_j) = \prod_{i=1}^{m} \lambda_i^n \prod_{j=1}^{n} \sigma_j^m$ = $(detA)^n (detB)^m$