Tensor Products

Definition of Tensor: Tensor refers to objects with multiple indexes. Comparatively, a “vector”
has one index while a “scalar” has none.Assume Vand W are in a vector space, a pure tensor is
an element of V & W of the formv @ w whereveVandw e W

What is a Tensor Product?

With a tensor product, we can construct a big vector space out of at least two smaller vector
spaces.

If we start with two vector spaces V, n-dimensional, and W, m-dimensional, the tensor products
of these two spaces would be nm-dimensional.

Explanation:
Vis {el, €, e en} and W is {f1’ o fm}
We define nm basis vectors e, X f]_ ,wherei=1,---,nandj=1,"- ,m

For two vector spaces, the tensor product is bilinear, meaning it is linear in V and linear in W as
well.
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Example: Let n=2 and m=3 the tensor product would be nm-dimensional so for this example, 6

dimensional. The basis vectors aree (%) f e X f e X f , ® f
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We can write these as six-component column vectors as below.
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The tensor product is shown below for general vectors v and w 1772
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As we are interested in application in mechanics, we are U +— AU,
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We can write the matrix as A @ [, I being the identity matrix. We will return to our prior
example where n=2 and m=3. The A matrix would be a two-by-twoand A & [ is a six-by-six.
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We will act this expression on v @ w, and yield:

ar 0 0 |as 0 0 V1w (1101 + arvz)uwn
0 an 0|0 ap 0 v Ws (an1v1 + a1202)w2
Ao D(iod) - 0 0 an| 0 0 ap v1ws _ | lanv +apva)uws | (A7) ® 4@
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In this scenario, the matrix A only acts on v but does not impact w.



This is also evident in matrix B: W — W maps w— Bw. Matrix B @ [ will only acton w,
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From above calculations, we can conclude a general rule: (A & 1) (17 X v; )=(A;)®M7 and

BRNWOW)-v® (Bw)
Helpful Proposition: (A @ B)(C @ D) = (AC Q BD)

In the case where we have two matrices, their multiplications are done on each vector space

separately, as shown below:

(A4,® DA, ® N=(A A)Q I,
(I ® B)I ® B)~I ® (B,B)
AQNURX®B)=00QB)ARI]) =(4QB)

The expression for (A @ B) allows us to write it in the matrix form explicitly:

ai1bir anbiz anbiz | aebyy  azbiz  aizbys
ayibay  apbyy  anbes | ajnbay  aiabay  ayabag
A® B — ayibs;  apibsy  apbss | ainbsy  aiabsy  agabss
wE= anibyy  azibiz  anbiz | agbiy  abia  axnbs
as1bay  ag1bay  agiboz | agabay by  assbog
anibz1  azibzy  azbss | agbsy agbsy  axbss

We can verify that (4 ® B)(v @ w )=(Av) ® (Bw)




Properties of Tensor (Kronecker) Products:

Pulling Across Scalars

AMa®b)=Ra) ®b=a® (Ab)

Example: R @ V

2B Q@ uw) + 51 ® v
=3*1) ® QW+ 1Q® (5v)
=1Q (6u) +1 Q (5v)

=1 ® (6u + 5v)

So, we can always end up combining the tensor products by pulling across scalars

Theorem: If v is an eigenvector for A with eigenvalue of A, and w is an eigenvector for B with
eigenvalue of o, then (v @ w ) is an eigenvector for (A Q B).

Proof: (4 ® BYv @ w )=Av® Bw =Av @ ow =Ao(v @ w )
Corollary 1: Tr (A @ B)= (TrA)(TrB)

m n m n
Proof: Tr (A ® B)=ZXeigenvaluesof(A @ B) = Y. Y. Aiojzz )Li > ?\iGJ,:(TrA)(TrB)
i=1j=1 i=1 j=1
Corollary 2: det(A @ B)Z(detA)n(detB)m
m n m n m n
Proof: det(A ® B) = [] cigenvalues 1of (4 ® B) =[] [1Ao=I1(\" r[oj)zml," no],’"
i=1j=1 i=1 = j=17 =1 j=1

=(detA)"(detB)"



